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Abstract: We find asymptotically sufficient statistics that could help sim-
plify inference in nonparametric regression problems with correlated errors.
These statistics are derived from a wavelet decomposition that is used to
whiten the noise process and to effectively separate high resolution and low
resolution components. The lower resolution components contain nearly all
the available information about the mean function, and the higher res-
olution components can be used to estimate the error covariances. The
strength of the correlation among the errors is related to the speed at
which the variance of the higher resolution components shrinks, and this is
considered an additional nuisance parameter in the model. We show that
the NPR experiment with correlated noise is asymptotically equivalent to
an experiment that observes the mean function in the presence of a con-
tinuous Gaussian process that is similar to a fractional Brownian motion.
These results provide a theoretical motivation for some commonly proposed
wavelet estimation techniques.
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1. Introduction

A nonparametric regression (NPR) problem consists of estimating an unknown
mean function that smoothly changes between observations at different design
points. There are n observations Yi of the form

Yi = µ (i/n) + ξi for i = 1, . . . , n (1)

where µ is the unknown smooth mean function on [0, 1] and the errors ξi are
observations from a zero-mean Gaussian process. For NPR problems that have
a particular long memory structure to the covariance of the error terms, we
will find a continuous Gaussian experiment approximation to the problem of
estimating the mean.

Brown and Low (1996) showed that the NPR experiment is asymptotically
equivalent to the white-noise model where the mean function is observed in the
presence of a Brownian motion process. This result paralleled work in Nussbaum
(1996) in showing that asymptotic results in nonparametric function estimation
problems can be simplified using approximations by the continuous white-noise
experiments that Pinsker (1980) studied. The original asymptotic equivalence
results for NPR experiments were extended by Brown et al. (2002) and Carter
(2006, 2007) along with refinements in the approximations from Rohde (2004)
and Reiss (2008).

All of these results assume that the errors ξi in (1) are all independent, and
this assumption is critical in establishing the appropriateness of a white-noise
model that also has independent increments. We want to consider the effect of
correlation between the observations on these approximations. Presumably, if
the correlation is weak then the effect washes out asymptotically. However, we
wish to consider cases where there is sufficient long-range correlation to affect
the form of the approximation. In particular, we will show that the appropriate
approximation is by a continuous Gaussian process experiment that is no longer
white noise but is closer to a fractional Brownian motion.

Our approach is motivated by the work in Johnstone and Silverman (1997)
and Johnstone (1999). They investigated the wavelet decomposition of data of
this type and used a fractional Brownian motion approximation in the limit:

dY (t) = µ(t) dt+ n−(β+1)/2dBK(t) t ∈ [0, 1]. (2)

They argued that the wavelet decomposition resulted in nearly independent
coefficients which simplified the inference significantly. We will assume that the
BK(t) process is decorrelated by a wavelet decomposition, and then show that
this continuous model is asymptotically equivalent to the NPR experiment with
the same covariance structure.

Theorem 1. The nonparametric regression experiment F observes Yi as in (1)
for an unknown mean function µ from a parameter set M(M,α) defined in
Section 1.2 and a known covariance structure as described in Section 1.3. This
experiment is asymptotically equivalent to the experiment E that observes

dY (t) = µ(t) dt+ σn−(β+1)/2dBK(t) (3)
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where BK(t) is a Brownian motion with covariance kernel K.

This will be proven in two steps. First, Lemma 1 proves that the first n
wavelet coefficients in a decomposition of dY (t) are asymptotically sufficient in
E for estimating µ. For the second step, Lemma 2 shows that a discrete wavelet
transform of the observations from F produces observations with nearly the
same distribution as these asymptotically sufficient statistics.

Furthermore, in both experiments the lower frequency terms in the wavelet
decomposition are sufficient for estimating the means, allowing the higher fre-
quency terms to be used to give information about the variance process. This
leads to Theorem 2, which proposes an experiment that allows some flexibility
in the error structure.

Theorem 2. The NPR experiment F̃ observes the Yi as in (1), where the
covariance structure depends on the parameters β and γ and is such that the
variance of the wavelet coefficients is 2γ+β(j+1).

The experiment Ê observes the pair(
γ̂

β̂

)
∼ N

((
γ
β

)
,

log 2
2
(
xTΛx

)−1
)

(4)

(where x and Λ are defined in Section 4) and then observes the continuous
Gaussian process conditionally on γ̂ and β̂

dY (t) = µ(t) dt+ n−(1+β̃)2γ̃dBK̂(t)

where the covariance K̂ is such that Var(BK̂(ψjk)) = 2β̃(j+1). The estimators β̃
and γ̃ are the same as (β̂, γ̂) but truncated so that −1 ≤ β̃ ≤ 0, and γ̃ ≥ −c.

For µ ∈ M(M,α), −1 < β ≤ 0, and γ > −c for some constant c, the
experiments F̃ and Ê are asymptotically equivalent.

This theorem can be seen as an extension of Carter (2007) Theorem 1 from
a case where there is a single unknown variance for all the wavelet coefficients
to a case where the variance changes as a log-linear function of the resolution
level (or frequency).

Wang (1996) addressed the issue of asymptotically sufficient statistics in the
fractional Brownian motion process. In Section 3 of that article there is an argu-
ment that bounds the difference between minimax errors in an NPR experiment
with correlated errors and an experiment that observes the mean in the presence
of fractional Brownian motion error. This result extends the sort of approxima-
tion in Donoho and Johnstone (1999) to correlated errors, and is very much in
the spirit of our Theorem 1 here. Our results differ from Wang (1996) in that
we have made a stronger assumption on the covariance structure of the errors in
order to obtain the full asymptotic equivalence of the experiments as discussed
in section 1.1.

Lemma 1 is presented and proven in Section 2. Section 3 presents Lemma 2
and the proof of Theorem 1. The proof for Theorem 2 is in Section 4 with some
relevant bounds in Sections 5 and 6.
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1.1. Asymptotic sufficiency

Instead of focusing on single estimation techniques, we will consider approxima-
tions of the entire statistical experiment. For large sample sizes, there is often a
simpler statistical experiment that can approximate the problem at hand. One
benefit of finding an approximating experiment is that it may have convenient
sufficient statistics even when they are not available in the original experiment.

Our approximations will therefore be of experiments rather than particular
distributions. A statistical experiment P that observes data X consists of a set
of probability distributions {Pθ} indexed by the parameter set θ ∈ Θ. We wish
to compare the information about θ in P to another experiment Q that observes
data Y from among the set of distributions {Qθ} that are indexed by the same
parameter θ. Implicitly, we are concerned with two sequences of experiments Pn
and Qn where n roughly denotes the increasing sample size, but generally, we
will leave off the subscript n. It will always be understood that the distributions
depend on the “sample size.”

The NPR experiment will be approximated using Le Cam’s notion of asymp-
totically equivalent experiments (Le Cam, 1964, 1986) and asymptotically suf-
ficient statistics (Le Cam, 1974). Asymptotically equivalent experiments have
corresponding inference procedures (such as estimators or tests) in each exper-
iment that perform nearly as well. Specifically, if there is an estimator τ(X) in
P with risk PθL(τ(X)) then, for bounded loss functions, there is an estimator
σ(Y ) such that

sup
θ

PθL(τ(X))−QθL(σ(Y ))→ 0

as n → ∞. These asymptotic equivalence results are stronger than what the
equivalence of minimax rates that is derived under a similar model in for example
Wang (1996). Our results imply a correspondence over a range of bounded loss
functions. Thus, the equivalence holds for a global L2 error as well as local error
measurements or other distances.

Asymptotic sufficiency is a stronger notion, where if T (X) is a sufficient
statistic for inference about θ in P, then T (Y ) is asymptotically sufficient for
Q when the total-variation distance between Pθ and Qθ is negligible. These
asymptotically sufficient statistics generate experiments that are all asymptoti-
cally equivalent. In particular, P and Q are asymptotically equivalent, and they
are also asymptotically equivalent to the experiments generated by the distribu-
tions of T (X) and T (Y ). As a result, an estimator in P should generally be of
the form τ(T (X)) and there is a corresponding estimator τ(T (Y )) that performs
nearly as well in the Q experiment. There is a basic transitive property to the
asymptotic equivalence that implies if P is asymptotically equivalent to Q, and
Q is asymptotically equivalent to R, then P is asymptotically equivalent to R.

Le Cam’s asymptotic equivalence is characterized using the total-variation
distance δ(Pθ,Qθ) between the distributions. We will abuse this notation a bit
by writing δ(P,Q) = supθ δ(Pθ,Qθ). It will often often be more convenient to
use the Kullback–Leibler divergence (D(P,Q) = P log [dP/dQ]) to bound the
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total variation distance

δ(Pθ,Qθ) ≤ 2D(Pθ,Qθ)1/2

(Kullback, 1967). The divergence is convenient for product experiments because
D(
∏

Pi,
∏
i Qi) =

∑
i D(Pi,Qi).

1.2. Wavelet basis

We will use orthonormal wavelet bases to characterize the function space and
to simplify the covariance structure of the errors.

Assuming we are considering periodic functions on the interval [0, 1], we can
construct periodic wavelet bases as in Daubechies (1992) Chapter 9.3. We start
with a space Vj which consists of functions of the form

fj(t) =
2j∑
k=1

ajkφjk(t), t ∈ [0, 1]

where φjk is an orthonormal set of periodic functions generated via

φjk(t) = 2j/2φ(2jt− k).

We will work with a φ function having finite support [0, N ], and at the bound-
aries of the interval the φjk(t) are given the proper periodic extensions. This
space generates wavelet functions ψjk that span the difference between the Vj
and Vj−1, and can be written ψjk(t) = 2j/2ψ(2jt− k) with the proper periodic
adjustment at the boundary (for example, ψj,2j (ε) = 2j/2ψ

(
2jε
)

for a small ε).
This periodic adjustment has a small effect at the high resolution levels, but is
a larger factor for small values of j. In particular, the scaling function at level
0 is φ0(t) =

∑N
k=0 φ(k + t) = 1.

The mean functions µ(t) will be assumed to be constructed from this wavelet
basis:

µ(t) = θ0φ0(t) +
∑
j≥0

2j∑
k=1

θjkψjk(t).

We will restrict the mean functions to those that belong to a Hölder(α) class of
functions. Specifically, the class of periodic mean functions µ(t) is M(M,α)

sup
M(M,α)

sup
t,s

|µ(t)− µ(s)|
|t− s|α

≤M

for some 1/2 < α < 1 and M > 0. This smoothness condition on the functions
bounds the rate of growth of the higher frequency terms in the orthonormal
expansion. Originally from Meyer (1990), in Daubechies (1992) p. 299 equation
(9.2.1) gives the bound

max
k
|θjk| ≤M22−j(α+1/2)
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for a constant M2 related to M . This bounds implies the useful bound on the
squared error in the tail of the basis expansion

∑
j>j∗

2j
2j∑
k=1

θ2jk ≤M2
2 2−εj

∗ (
1− 2−ε

)−1 (5)

where ε = 2α− 1.

1.3. Error structure

These results rely on a specific structure to the covariance matrix of the errors in
the NPR experiment. As in Johnstone (1999), the fractional Brownian motion is
the motivating example for our continuous Gaussian model. However, this model
does not necessarily provide the independent coefficients that would simplify the
inference. Instead, an error structure that has roughly some of the properties of
the fractional Brownian motion will be considered.

Traditionally, the asymptotics of the NPR experiment have assumed inde-
pendent noise. This white-noise model is especially convenient because all of
the eigenvalues of the covariance operator are equal. Thus, any orthonormal
basis generates a set of independent standard normal coefficients. With a more
general covariance function, the eigenvalues are different and only particular de-
compositions lead to independent coefficients. Thus there is much less flexibility
in the choice of basis, and this basis determines some of the structure of the
covariance.

Following Johnstone (1999); Johnstone and Silverman (1997); Zhang and
Waiter (1994); Wang (1996) and Cavalier (2004) among others, we will assume
a covariance structure that is whitened by a wavelet decomposition. When there
is a long-range positive correlation between the observations, the wavelet decom-
position tends to decorrelate the error process because the wavelet functions act
like band-pass filters.

We will assume that there exists an orthonormal basis φ0 and ψjk for j ≥ 0
and k = 0, . . . , 2j−1 such that the decomposition of the error process generates
independent normal coefficients. In other words, the error process is a zero-mean
Gaussian process that is roughly

dBK(t) = ξ0φ0(t) +
∑
j≥0

∑
k

ξjkψjk(t)

in the distributional sense where the ξkj are independent normals. The Var(ξjk)
will be assumed to depend on j and not k as a sort of stationarity condition. In
particular, we will assume that Var(ξ0) = σ2 and then Var(ξjk) = σ22β(j+1) for
some β in the interval (−1, 0]. If β = 0 then this is the white-noise process.

This is a convenient form for the error, but not completely unrealistic. Wavelet
decompositions nearly whiten the fractional Brownian motion process. Wornell
(1990) argued that long-memory processes can be constructed via a wavelet ba-
sis with variances at resolution level j shrinking like 2−γj for 0 < γ < 2. McCoy
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and Walden (1996) showed that the discrete wavelet transform nearly decorre-
lates the noise in fractionally differenced white-noise processes. Alternatively,
Wang (1996) used a wavelet–vaguelette decomposition (Donoho, 1995) to find
a decomposition of the fractional Brownian motion that results in independent
coefficients for a nearly orthonormal basis.

Section 7 demonstrates some properties of the specific Gaussian process gen-
erated by using the Haar basis as the wavelet basis. These properties are con-
sistent with the sort of behavior that we want in the covariances of our obser-
vations. The correlation between observations decreases like d−(β+1) for β < 0
where d measures the distance between the locations of the coefficients.

A well established method for estimating the parameter β in these long-
range dependent models is to fit a linear function to the log of an estimate of
the variances of the coefficients at each resolution level. This idea goes back
to at least Abry and Veitch (1998) and is now a standard approach that has
been improved upon in subsequent work, see Veitch and Abry (1999); Stoev
et al. (2002) among others. This motivates the asymptotic sufficient statistics
in Theorem 2 which are least squares estimates from the fitted line.

The assumptions in Theorem 1 on the covariance structure of the errors is
strong and could limit the applicability of the result. However, if we allow the
variances at different scales to have a range of linear relationship, we could
then have a sufficiently rich class of error models. Theorem 2 allows for this
somewhat larger class of models, and it seems likely that the changing magnitude
of the variances over different resolutions level will have a greater effect on the
distribution of the observed errors than the underlying basis.

2. Approximate sufficiency in the Gaussian sequence experiment

The first step in the proof of Theorem 1 is to establish that a truncated wavelet
decomposition is asymptotically sufficient for the continuous Gaussian experi-
ment.

Lemma 1. The experiment E is a Gaussian process experiment that observes

dY (t) = µ(t) dt+ σn−(β+1)/2dBK(t) (6)

where BK is a zero-mean continuous Gaussian process with covariance K. There
are asymptotically sufficient statistics for estimating µ ∈M(M,α)

y0, yjk ∼ N
(
θjk, σ

2n−β−12βj
)

for 0 ≤ j ≤ j∗ as long as

j∗ >
log2 n

2α
.

In the Gaussian sequence experiment E where only the mean µ(t) is to be
estimated, the likelihood is

dPµ
dP0

(y) = exp

2y0θ0 − θ20
2σ2

+ σ−2n(1+β)
∑
j≥0

σ−22−β(j+1)
∑
k

(
θjkyjk −

1
2
θ2kj

)
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where Pµ is the distribution of Y (t) and P0 is the distribution of the version
with mean 0 which would just be σn−(β+1)/2BK(t).

We want to approximate this experiment E by a similar experiment F where
the mean is projected onto the first j∗ resolution levels, i.e. µ is replaced by µ̄

µ̄(t) = θ0φ0(t) +
j∗∑
j=0

∑
k

θjkψjk(t). (7)

The likelihood becomes

dQµ

dQ0
(y) = exp

2y0θ0 − θ20
2σ2

+ σ−2n(1+β)

j∗∑
j=0

2−βj
∑
k

(
θjkyjk −

1
2
θ2kj

) . (8)

Therefore, this experiment F has sufficient statistics y0 and yjk for 0 ≤ j ≤
j∗. These observations are approximately sufficient in the E experiment if the
distance between the distributions in the two experiments is small.

By (15), the distance between these two sets of experiments is

δ (P,Q) ≤ σ−1n(β+1)/2

∑
j>J

2−βj
∑
k

θ2jk

1/2

.

For the parameter space M(M,α), (16) bounds the distance between the two
experiments as

δ(P,Q) ≤ σ−1n(β+1)/2M2−εJ

≤Mσ−12(J−j∗)(1+β)/2−εj∗

which is negligible as n → ∞ when the dimension of the sufficient statistics
increases like

j∗ >

(
1 + β

β + 2α

)
log2 n

for −1 < β < 0. The worst case is when β = 0, and thus we have proved
Lemma 1.

3. Approximating the NPR experiment

Theorem 1 can now be proven by approximating the sufficient statistics from
Lemma 1 using the observations from the NPR experiment F .

We suppose that we have n observations from the NPR experiment as in (1)
where the ξi are Gaussian random variables with a specified covariance function.
Specifically, let W be the n × n matrix that performs the discrete wavelet
transform, and WT is its inverse. The vector of random wavelet coefficients
from Lemma 1, y = (y0, y00, y01, . . . , yJ−1,2J−1−1)T where J = log2 n, can be
transformed via the discrete wavelet transform to create ỹJ = WTy.
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The expected value of this transformed vector is

EỹJi = µ̃Ji =
∫

2J/2φ(2J t− i)µ(t) dt.

For a µ(t) function that is nearly constant around i/n, µ̃Ji ≈ 2−J/2µ(i/n) so
we can approximate ỹJ by 1√

n
(Y1, Y2, . . . , YN )T.

In the original NPR experiment, the variances Var(Yi) = Var(ξi) = Cσ2 for
a constant C that depends on β and the basis we’ll be using. The covariance
matrix for these Yi will be assumed to be Σ = WDWT where D is the diagonal
matrix of Var(yjk) = σ2

n2β(j+1). The variance of the ỹJk should be the same as
that of Yin−1/2, and in the model described, Var(ỹJk) ∝ σ2

nn
β . Therefore, σ2

n

should be set to σ2n−1−β .

Lemma 2. If the mean function µ(t) is in M(M,α) then the total variation
distance between the distribution Pµ of the vector 1√

n
(Y1, Y2, . . . , YN )T and the

distribution P̃µ of the vector ỹJ is

sup
µ∈M(M,α)

δ
(
Pµ, P̃µ

)
≤
(
MNα+1

α+ 1

)
n1/2−α+β/2.

This lemma essentially goes back to the original work of Mallat (1989) and
parallels some of what was done in Brown and Low (1996), Johnstone (1999),
Rohde (2004), and Carter (2006).

The NPR observations are such that the covariance matrix of ξi is also Σ,
and therefore the total variation distance between the distributions is bounded
in (14) by

δ(P, P̃) ≤ 1√
2π

∆1/2

with
∆ = (µ(i/n)− µ̃Ji)T Σ−1 (µ(i/n)− µ̃Ji) .

A standard calculation bounds the difference between the means when φ(t) <
M with support on [0, N ] and the µ(t) are Hölder (α) for α < 1∣∣∣∣µ( in

)
− µ̃Ji

∣∣∣∣ ≤ n−1/2−α M

α+ 1
Nα+1.

The covariance matrix is a positive definite matrix such that Σ−1 = MD−1MT.
The first column of the wavelet transform matrix is

√
n1 where 1 is the vector

of 1’s. Therefore,

∆ ≤
(
MNα+1

α+ 1

)
n−1−2αnn1+β =

(
MNα+1

α+ 1

)
n1−2α+β

which is negligible for large n and α > 1/2.
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3.1. Proof of Theorem 1

The theorem follows from the fact that the observations y0, {yjk} for j =
0, . . . , J−1 are asymptotically sufficient for the continuous process in (2). Then
a linear function of these sufficient statistics ỹ = WTy is still approximately
sufficient. Thus, the experiment that seeks to draw inference about µ from the
observations ỹJi is asymptotically equivalent to the experiment that observes
(2) by Lemma 1.

Furthermore, by Lemma 2, the original NPR experiment that has the same
covariance structure as ỹJi is asymptotically equivalent to that experiment and
thus, by transitivity, to the experiment that observes the process (2) as well.
This proves Theorem 1.

3.2. Remarks on the covariance structure

This result is restrictive in that it requires a specific known covariance structure.
We are working under the assumption that the covariance matrix has eigenfunc-
tions that correspond to a wavelet basis. This does not generally lead to a typical
covariance structure. It does not even necessarily lead to a stationary Gaussian
process; see the Haar basis example below.

The difficulty is that the requirement for having asymptotically equivalent ex-
periments is quite strict, and the total variation distance between the processes
with even small differences in the structure of the covariance is not negligible.
For two multivariate Guassian distributions with the same means but where one
covariance matrix is Σ and the other is D, a diagonal matrix with the same diag-
onal elements as Σ, the Kullback–Leibler divergence between the distributions
is log |Σ| − log |D|.

If the correlation between the highest level coefficients Corr (ξj∗,k, ξj∗,k+1) =
ρ then the contribution to the difference of the log determinants is on the order
of ρ2j

∗
. The dimension of the problem is growing while the correlations are gen-

erally not going to 0 significantly quickly. For instance, in a typical wavelet basis
decomposition of the true fractional Brownian motion Corr (ξj∗,k, ξj∗,k+1) = cβ
where cβ is a constant that depends on β but not j∗ or n.

Thus, the difference log |Σ| − log |D| will not go to 0 as the sample size
increases. Therefore, for the sort of long-range correlation structures that we
are considering here, the eigenfunctions of the kernel K need to be known or
else the experiments will not be asymptotically equivalent.

4. Estimating the covariance of the increments.

The key limitation of Theorem 1 is that it supposes that the covariance structure
of the errors is known to the experimenter. To make the approximation more
useful, it would help if the covariance structure was more flexible. A strategy
similar to that used by Carter (2007) can be used to estimate the variances of
the coefficients.
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In Carter (2007), I showed that a model with a variance that changes slowly
over time can still be approximated by the Gaussian process as long as all of the
observations are independent. Our result here is that for correlated observations,
if the variance is a linear function of the frequency then a similar technique can
be used to establish a set of asymptotically sufficient statistics.

Flexibility with regard to the covariance structure is added by allowing the
magnitude of the Var(yjk) to depend on the resolution level j. The variances
will be described by two parameters γ and β, which characterize the size of the
error and the speed that it shrinks at higher resolution levels. These nuisance
parameters can be estimated using part of the data, and then the inference can
be carried out conditionally on the estimates.

Specifically, the experiment En observes independent components y0 ∼ N
(
θ0, n

−(1+β)2γ
)

and
yjk ∼ N

(
θjk, n−(1+β)2γ+(j+1)β

)
for 0 ≤ j ≤ J

where the n−(1+β) factor is included to match up with the scaling functions
at the Jth resolution level. These observations form a new experiment with a
parameter set that includes (µ, γ, β) where µ(t) ∈ M(M, ε), −1 < β < 0 and γ
is bounded below by a constant −c.

This experiment En with the parametric variances is no longer an approxi-
mately sufficient statistic for the experiment that observes all of the θjk. That
experiment has too much information about the variance. If we observed the
entire sequence at all resolution levels j then γ and β could be estimated ex-
actly. We need to adopt another approximating experiment as in Carter (2007).
Many of the bounds in this section follow arguments from that paper.

4.1. Proof of Theorem 2

The theorem can be proven by applying Lemma 2 and then a version of Lemma 1
that uses only a small proportion of the low frequency wavelet coefficients. The
rest of the coefficients can be used to fix the parameters in the covariance of the
observations.

The first step is to decompose the nonparametric regression into a set of
wavelet coefficients. The n NPR observations Yi can be transformed by di-
viding by

√
n and then performing the discrete wavelet transformation as in

Lemma 2. The result is that a sequence of n wavelet coefficients y0 and yjk for
j = 0, . . . , J − 1 is equivalent to the original NPR observations with a total-
variation distance between the distributions of

δ
(
Pµ,γ,β , P̃µγβ

)
≤ C2−γn1−2α+β .

The supremum of this bound over all γ > −c and β < 0 is

δ
(
P, P̃

)
≤ C2cn1−2α

which will be negative for α > 1/2.
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The key strategy is to break the observations from this wavelet composition
into pieces starting at level j∗, where observations on j ≤ j∗ are assumed to
be informative about the means, and the higher resolution levels are used to
estimate the covariance structure.

For each resolution level with j > j∗, we generate the approximately sufficient
statistics Vj =

∑
k y

2
jk. Along with the yjk for j ≤ j∗, the collection of Vj are

exactly sufficient if the means are θjk = 0 for j > j∗, because if there is no
information about the means in the higher frequency terms, then we have a
piece of the experiment that is like a normal scale family. This new experiment
Ev is asymptotically equivalent to our En.

The error in approximating En by Ev, where the means of the higher frequen-
cies coefficients are 0, is bounded by (15)

δ(Ev, En) ≤

 J−1∑
j=j∗+1

n1+β2−(γ+(j+1)β)
∑
k

θ2jk

1/2

.

For θjk in M(M, ε) space, (16) bounds the distance as bound

δ (Ev, En) ≤M2−γ/22(J−j∗−1)(1+β)/2−β/2−εj∗ ≤M2c/2+1/22J/2−(1/2+ε)j∗ (9)

which is negligible when j∗ > J/(1 + 2ε).
This Ev experiment has sufficient statistics y0, yjk for j ≤ j∗, and

Vj ∼ Γ
(

2j , n−(1+β)2γ+β(j+1)−j
)

for j = j∗ + 1, . . . , J − 1.

Furthermore, there are approximately sufficient statistics in this experiment
(yjk, γ̂, β̂) where γ̂ and β̂ are the weighted least-squares estimates of γ and β
from the data log Vj . These are exactly sufficient statistics in the experiment E`
that observes the y0 and yjk for the lower resolution levels j ≤ j∗ as before, in
addition to the observations 2Wj for j∗ < j < J where

Wj ∼ N
(
−(1 + β)J + γ + β(j + 1), 2−j+1(log 2)

)
.

The distance between E` and Ev depends on the distance between the distri-
bution of the log of the Gamma variables and the normal approximation to this
distribution. The calculation in section 10.1 of Carter (2007) gives a bound on
the Kullback–Leibler divergence of D

(
Qj , Q̆j

)
≤ 2−j where Qj is the distribu-

tion of Vj , and Q̆j is the distribution of 2Wj . Therefore, the total error between
the two experiments is

δ(E`, Ev) ≤

 J−1∑
j=j∗+1

2−j

1/2

≤ 2−j
∗/2.

Therefore, the observations in E` are asymptotically sufficient for Ev and thus
also En (as long as j∗ →∞ with n).
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A. V. Carter/NPR with Correlated Noise 13

In the experiment E`, the sufficient statistics for estimating γ and β are the
weighted least-squares estimators γ̂ and β̂(

γ̂

β̂

)
=
(
xTΛx

)−1
xTΛ (W + J)

where Λ is the diagonal matrix with 2j for j = j∗+1, . . . , J−1 along its diagonal,
x is the design matrix with rows (1, j − J + 1), and W + J is the column of
observations Wj −J . The vector of estimators is normal with mean (γ β)T and
covariance 1

2 (log 2)
(
xTΛx

)−1.
Therefore, we can compare this experiment E` to an experiment Ê that

observes the same (γ̂ β̂)T, but the y0 and yjk for j ≤ j∗ are replaced by
Gaussian random variables ŷjk with variances (conditional on (γ̂, β̂)) that are
Var(ŷjk) = 2γ̂+(j−J+1)β̂−J . The error in this approximation depends on the dis-
tance between the two sets of independent normal experiments with different
variances. Letting Pjk be the distribution of yjk and P̂jk the distribution of ŷjk,
the bound (22) in Section 6 gives

D
(
Qjk, Q̂jk

)
≤ (log n)2

n− 2j∗
+O

(
(log n)4

(n− 2j∗+1)2

)
,

and

D
(
Q0, Q̂0

)
≤ (log n)2

n− 2j∗
+O

(
(log n)4

(n− 2j∗+1)2

)
.

There are 2j
∗+1 independent normals yjk for j ≤ j∗ so that the total divergence

is

δ(E`, Ê)2 ≤ 2(log n)2

2J−j∗ − 1
+O

(
2j

∗
(log n)4

(n− 2j∗+1)2

)
. (10)

Therefore, the experiments E` and Ê are asymptotically equivalent for

j∗ = J − 2 log2 J − ηn (11)

for some ηn →∞.
We can improve this approximation by replacing the estimators β̂ and γ̂ in

Ê by using

β̃ =


−1 β̂ ≤ −1
β̂ −1 < β̂ < 0
0 β̂ ≥ 0

and γ̃ = γ̂ ∨ c to match up with the bounds on the parameter space. The
new version of this experiment therefore observes (γ̂, β̂) and the normal co-
ordinates yjk ∼ N

(
θjk, n

1+β̃2γ̃2β̃(j+1)
)

. for 0 ≤ j ≤ j∗. The error between

E` and this new version of Ê is smaller because
∣∣∣γ − γ̃ + (β − β̃)(j − J)

∣∣∣ ≤∣∣∣γ − γ̂ + (β − β̂)(j − J)
∣∣∣, which makes the bound in (19) uniformly smaller.
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Finally, we create a continuous Gaussian version of the Ê experiment. This
approximation Ẽ observes all the ỹkj for k ≥ 0 with means θjk and variances
n−(1+β̃)2γ̃+β̃(j+1). The Ê are actually sufficient statistics for an experiment that
observes (γ̂, β̂) and yjk for 0 ≤ j ≤ j∗ and for j > j∗

yjk ∼ N
(

0, n−(1+β̃)2γ̃+β̃(j+1)
)
.

The difference between the experiments Ê and Ẽ conditional on γ̃ and β̃ is as
in Section 2 and (16) less than M2−γ̃2(J−j∗)(1+β̃)/2−β̃/2−εj∗ . The expectation
of this bound when averaged over the possible values of (γ̃, β̃) is a bound on
the unconditional error. Furthermore, this expectation is less than the minimum
over possible values of (γ̃, β̃) (this is the real advantage that comes from going
from (γ̂, β̂) to (γ̃, β̃)). Thus,

δ
(
Ê , Ẽ

)
≤ 2c−12(J−j∗)/2−εj∗ . (12)

As before, this is asymptotically negligible when j∗ > J/(1 + 2ε).
All that is left to do is choose the level j∗ at which to split the data so that

the requirements from (9) and (12) that j∗ > J/(1 + 2ε) and from (11) that
j∗ = J − 2 log2 J − ηn are all fulfilled. We could choose ηn = εJ

1+2ε − log2 J so
that

j∗ =
J

1 + 2ε
+

εJ

1 + 2ε
− log2 J

which is greater than J/(1 + 2ε) for ε > 0. This choice of j∗ plugged into the
bound in (9) gives us

δ(Ev, En) ≤ N2(c+1)/2J
1
2+ε2−εJ/2 → 0

as J →∞ for ε > 0. At the same time, the bound in (10) becomes

δ(E`, Ê)2 ≤ 2(log 2)2J
2Jε/(1+2ε) − J−1

→ 0.

Thus, Theorem 2 is established.

5. Bounding the total variation distance.

We need a bound on the distance between two multivariate normal distributions
with different means in order to bound the error in many of our approximations.

For shifted Gaussian processes, the total-variation distance between the dis-
tributions is

δ(Pµ1 ,Pµ2) = 1− 2Φ(−∆1/2/2) (13)

where ∆ = (µ1−µ2)TΣ−1(µ1−µ2). The expression in (13) for the total variation
distance is concave for positive ∆, so a simple expansion gives

δ(Pµ1 ,Pµ2) ≤ 1√
2π

∆1/2. (14)
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For the Gaussian process with correlated components, we will assume that the
variance of each wavelet coefficient is of the form Var (ψjk) = σ2n−(1+β)2β(j+1)

where the variance is calibrated so that Var(Yi) = σ2 = nVar(BK(φJ,`)). A
bound on the error in the projection onto the span of ψjk for j > j∗ comes from
(14) which depends on

∆ =
n1+β

σ2

∑
j>j∗

2−β(j+1)
∑
k

θ2jk (15)

≤ n1+β

σ2
2−(1+β)j∗−β

∑
j>j∗

2j
∑
j

θ2jk

≤M2
2σ
−22(J−j∗)(1+β)−εj∗ (2β − 2ε+β

)−1
(16)

where the upper bound in (16) follows from n = 2J , the definition of M(M,α)
and the bound in (5), and −1 < β < 0. This error is negligible as J → ∞
whenever

j∗ >
J

2α
. (17)

6. Bounds from the estimated variances.

In order to expand our asymptotically sufficient statistics out into a contin-
uous Gaussian experiment, we need a bound on the total-variation distance
between En which, for 0 ≤ j ≤ j∗, observes a sequence of normals with vari-
ances n−(1+β)2γ+β(j+1) and Eg, which observes a similar set of normals with
variances n−(1+β)2γ̂+β̂(j+1).

For two normal distributions with the same means µ, and variances σ2
1 and

σ2
2 respectively, the Kullback–Leibler divergence is

D(N1, N2) =
1
2

[
σ2

1

σ2
2

− 1− log
(
σ2

1

σ2
2

)]
. (18)

Thus, for Qkj (the distribution of the ykj) and Q̂kj (the distribution of the ŷkj),
the divergence between the conditional distributions given γ̂ and β̂ is

D
(
Qkj , Q̂kj | γ̂, β̂

)
=

1
2

2γ−γ̂+(j+1−J)(β−β̂)+

− 1
2
− 1

2

[
γ − γ̂ + (j + 1− J)

(
β − β̂

)]
log 2, (19)

and

D
(
Q0, Q̂0 | γ̂, β̂

)
=

1
2

2γ−γ̂ − 1
2
− (γ − γ̂) log 2

2
. (20)

This divergence between conditional distributions can be used to bound the
joint divergence

D
(
Qkj , Q̂kj

)
= ED

(
Qkj , Q̂kj | γ̂, β̂

)
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where the expectation is taken over the estimators γ̂ and β̂.
To bound the expected value of the divergence in (19), we need the distribu-

tion of the estimators(
γ̂

β̂

)
∼ N

((
γ
β

)
,

log 2
2
(
xTΛx

)−1
)
.

This implies that

E exp
[
log 2

(
γ − γ̂ + (j + 1− J)

(
β − β̂

))]
= exp

[
(log 2)2

2
Var

(
γ̂ + (j + 1− J)β̂

)]
,

and therefore

ED
(
Qkj , Q̂kj | γ̂, β̂

)
= exp

[
(log 2)2

2
Var

(
γ̂ + (j + 1− J)β̂

)]
− 1

2
.

Via elementary linear algebra calculations we get that for

ζ =

 J−1∑
i=j∗+1

2i

 J−1∑
i=j∗+1

(J − i− 1)22i

+

 J−1∑
i=j∗+1

(J − i− 1)2i

2

,

Var (γ̂) =
log 2

2

 J−1∑
i=j∗+1

(J − i− 1)22i

 ζ−1

Var
(
β̂
)

=
log 2

2

 J−1∑
i=j∗+1

2i

 ζ−1

Cov
(
γ̂, β̂

)
=

log 2
2

 J−1∑
i=j∗+1

(J − i− 1)2i

 ζ−1.

As a result,

Var
(
γ̂ + (j + 1− J)β̂

)
=

log 2
2
×[∑

i

(J − i− 1)22i + (J − j − 1)2
∑
i

2i − 2(J − j − 1)
∑
i

(J − i− 1)2i
]
ζ−1.

(21)

To simplify this expression, let X be a random variable with probability mass
function proportional to 2i for i = j∗ + 1, . . . , J − 1. Thus, the ζ is equal to(∑

2i
)2 [E(J −X − 1)2 − [E(J −X − 1)]2

]
=
(∑

2i
)2 Var(X). Similarly, the

main factor in (21) is equal to(∑
2i
) [

E(J −X − 1)2 + (J − j − 1)2 − 2(J − j − 1)E(J −X − 1)
]

=
(∑

2i
)

E(X−j)2.

imsart-generic ver. 2009/02/27 file: fractional*final.tex date: December 18, 2009



A. V. Carter/NPR with Correlated Noise 17

A simple bound of 0 < X− j < J leads to E(X− j)2 < J2. Furthermore, the
variance of X is decreasing in j∗, and thus it is greater than 2/9 when j∗ < J−2.
Therefore,

Var
(
γ̂ + (j + 1− J)β̂

)
≤ 9 log 2

4
J2∑

2i
≤ J2

2J−1 − 2j∗

because 9 log 2/4 < 2.
Thus,

D
(
Qjk, Q̂jk

)
=

1
2

exp
[

(log 2)2

2
Var

(
γ̂ + (j + 1− J)β̂

)]
− 1

2

≤ 1
2

exp
[

(log 2)2J2

2J − 2j∗+1

]
− 1

2

≤ (log 2)2J2

2J − 2j∗+1
+

CJ4

(2J − 2j∗)2

=
(log n)2

n− 2j∗+1
+O

(
(log n)4

(n− 2j∗+1)2

)
. (22)

Analogously, the expected divergence between Q0 and Q̂jk is bounded by

ED
(
Q0, Q̂0 | γ̂, β̂

)
=

1
2

exp
[
− (log 2)2

2
Var(γ̂)

]
− 1

2

=
1
2

exp
[
− (log 2)2

2

(
(log 2)E(J −X − 1)2

2 (
∑

2i) Var(X)

)]
− 1

2

≤ (log 2)2J2

2J − 2j∗+1
+

CJ4

(2J − 2j∗)2
.

If we add up these errors over the 2j
∗

observations in the experiment, we get
that the error in the approximation is less than C(log n)2/(n2−j

∗ − 1), which is
negligible for j∗ sufficiently small.

7. Haar basis covariance

The Haar basis is a simple enough wavelet basis that we can make some explicit
calculations of the properties of the error distribution. We will show that the
resulting errors ξi will have variances of approximately nβ as we expected, and
the correlation between ξi and ξj will decrease at about a rate of |i− j|−(1+β).

The scaling functions for the Haar basis are constant on 2j dyadic intervals at
the resolution level j. The assumption is that we have a single scaling function
coefficient with Var(y0) = 1, and then every wavelet coefficient yjk is indepen-
dent and has variance 2β(j+1). Then the covariances can be calculated from the
synthesis formula for the Haar basis.
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The formula for synthesizing the scaling function coefficients ỹJk from the
wavelet decomposition is

ỹJk = 2−J/2y0 +
J−1∑
j=0

ζj,J,k2(j−J)/2yjk∗

where k∗ is the index such that ψjk∗ has support that includes the support of
φJk. The ζj,J,k is either 1 or -1 depending on whether φJk sits in the positive
or negative half of the ψjk∗ function.

Using the covariance structure described above, the variance of ỹJk is

Var (ỹJk) = 2−J +
J−1∑
j=0

2(j−J)+β(j+1)

= 2−J + 2β−J
[

2(1+β)J − 1
21+β − 1

]
= 2βJ

[
1

2− 2−β

]
− 2−J

[
2−β − 1
2− 2−β

]
for −1 < β < 0. For β = 0, the variance of each scaling function coefficient
is 1 as in white noise. For β = −1, direct calculation leads to a variance of
2−J(1 + J/2).

To find the covariance between two variables ỹJk1 and ỹJk2 , we need j∗ which
is the highest resolution level such that the support of ψj∗k∗ includes the support
of both scaling functions φJk1 and φJk2 . The covariance is thus

Cov (ỹJk1 , ỹJk2) = 2−J +
j∗−1∑
j=0

2(j−J)+β(j+1) − 2j
∗−J+β(j∗+1)

= 2−J − 2j
∗−J+β(j∗+1) + 2β−J

[
2(1+β)j∗ − 1

21+β − 1

]
= 2j

∗−J+β(j∗+1)

[
2− 21+β

21+β − 1

]
− 2−J

[
2−β − 1
2− 2−β

]
= 2βJ

(
2−(1+β)(J−j∗)

)[ 1− 2β

1− 2−β−1

]
− 2−J

[
2−β − 1
2− 2−β

]
.

For large J the correlation is on the order of d−(1+β) where d = 2J−j
∗

is a proxy
for the distance between the observations. For β = 0, all of these covariances
are 0. For β = −1, the correlation is j∗/(J + 2).
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