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Estimating the mean in a nonparametric regression on a two-dimensional

regular grid of design points is asymptotically equivalent to estimating the drift

of a continuous Gaussian process on the unit square. In particular, we provide

a construction of a Brownian sheet process with a drift that is almost the mean

function in the nonparametric regression. This can be used to apply estimation

or testing procedures from the continuous process to the regression experiment

as in Le Cam’s theory of equivalent experiments. Our result is motivated by

first looking at the amount of information lost in binning the data in a density

estimation problem.
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1 Introduction

The purpose of this paper is to establish a connection between a nonparametric

regression on a two-dimensional set of design points and an appropriate contin-

uous Gaussian approximation. This connection provides a bound on Le Cam’s

deficiency distance between the experiments and allows inference in the easier

problem (the continuous case) to be applied to the practical problem (observa-

tions on a finite grid of points). The motivation for the form of this connection

comes from a similar result: approximating the problem of estimating an un-

known density from n independent observations by the experiment that observes

only those observations aggregated into m bins.

Brown and Low (1996) showed that the nonparametric regression experiment

Yi = g(xi) + σξi i = 1, . . . , n (1)

with ξi independent standard normals, xi = i/(n + 1), σ a known value, and

g an unknown smooth function on [0, 1], is asymptotically equivalent to an

observation of a continuous Gaussian process with an unknown drift function

dYt = g(t) dt +
σ√
n

dWt (2)

where Wt is a standard Brownian Motion on [0, 1] whenever the class of possible

mean functions g ∈ G is a subset of a Lipshitz(α) space with α > 1/2.

This result does not immediately extend to a regression on a two-dimensional

space. The higher dimensional result requires that the class of drift functions

be smoother; in particular, they must be differentiable, α > 1. We propose a

construction that can take advantage of this added smoothness.

The idea of developing asymptotic results for nonparametric regression by

appealing to a continuous Gaussian processes approximation is widely used, see

for example Donoho et al. (1995) or Efromovich (1999, Chapt. 7). Donoho and

Johnstone (1999) described a method for constructing wavelet coefficients from

the nonparametric regression as if the original process was continuous. They

showed that the squared-error loss was not significantly effected by the ap-

proximation. Our construction leads to the same statistical estimators. Brown

et al. (2002) extended their original result to include regression with a ran-

dom design, but our result assumes a fixed grid of equally-spaced design points.

Grama and Nussbaum (1998) established equivalence for regression problems

with non-normal errors.
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Nussbaum (1996) showed that observing n independent observations from an

unknown density is equivalent to a Brownian motion plus drift. Carter (2002)

and Brown et al. (2004) constructed a connection between these experiments by

comparing their behavior on a finite partition of the unit interval. It is also then

necessary to bound the error in “discretizing” the continuous observations. The

process in (2) is approximated by its increments Y (j/m) − Y ((j − 1)/m), and

the independent observations are approximated by the number falling in each

of m equal subintervals. These two problems are related and the solution of the

binning problem will motivate the approach used to go from the continuous to

the finite-dimensional Gaussian process. The technical bounds in section 4 can

essentially be used in both situations.

1.1 Le Cam’s deficiency distance

The constructions described in sections 2 and 3 will bound the deficiency dis-

tance between the experiments. This statistical distance compares the relevant

information about the parameter that is available in the two sets of distributions.

First, the total variation distance between two distributions is

‖P −Q‖ = sup
A∈A

P (A)−Q(A) (3)

where P and Q are both measures on the σ-field A. This distance also bounds

the difference in the expectations of bounded functions |g| < 1,

sup
{g:|g|≤1}

|P (g)−Q(g)| ≤ 2‖P −Q‖.

However, this distance is equal to 1 if P and Q do not have common support.

A statistical experiment P consists of a set of distributions {Pθ : θ ∈ Θ}
indexed by a parameter set Θ for data X ∈ X with a σ-field A. A second

experiment Q = {Qθ : θ ∈ Θ} has the same parameter set but a different sample

space (Y,B). To compare these two experiments, we need a way to connect the

sample space Y to X . A randomization of the data X can be described by the

conditional distribution Kx on (Y,B) given X = x. Let PθKx represent the

marginal distribution on (Y,B). The randomization does not depend on θ so

PθKx cannot contain any additional information about θ. If ‖PθKx − Qθ‖ is

always small, then Q does not have much more information about θ than P.
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Le Cam’s deficiency (Le Cam, 1986, pp. 18–20) is

δ(P,Q) = inf
K

sup
θ∈Θ

‖PθK −Qθ‖

where K is a “transition” from the linear space including probability distri-

butions Pθ to a space that includes the measures Qθ. For experiments that

depend on an increasing sample size n, if δ(Pn,Qn) → 0 then the sequence

of experiments Pn are asymptotically as informative as Qn. Furthermore, if

max [δ(Pn,Qn), δ(Qn,Pn)] → 0 then Pn and Qn are termed asymptotically

equivalent.

For our purposes, it is not necessary to think in terms of these general tran-

sitions. We will bound the deficiency using a transformation of the observations

X from P that may also include an external randomization T (X, W ). The

random variable W represents the external randomization that has the same

distribution for all θ. Then Kx is the conditional distribution of T (X, W ) given

X = x. Thus,

δ(P,Q) ≤ sup
θ∈Θ

‖PθKx −Qθ‖

= sup
θ∈Θ

sup
A∈A

|Pθ{T (X, W ) ∈ A} −Qθ{Y ∈ A}|

The usefulness of a bound of this type is in its flexibility. Suppose that

supθ∈Θ ‖PθKx − Qθ‖ ≤ τ. Then for any bounded loss function |L(a, θ)| ≤ 1,

any decision procedure d(Y ) in the experiment Q which has risk R(d(Y ), θ) =

QθL(d(Y ), θ) generates a randomized decision procedure d [T (X, W )] such that

R(d [T (X, W )] , θ) = PθL(d [T (X, W )] , θ) ≤ QθL(d(Y ), θ) + 2τ.

In other words, the T transformation maps good decision procedures for Q to

good decision procedures for the P experiment.

1.2 Main Results

The parameter sets in these nonparametric experiments are Lipshitz classes of

differentiable functions L(α, M) for 1 < α ≤ 2 where f ∈ L(α, M) implies that

|f(x)| ≤ M , |f ′(x)| ≤ M , and

|f ′(x)− f ′(y)| ≤ M |x− y|α−1 (4)

for every x and y in the sample space.
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For g: [0, 1]2 7→ R, the analogous conditions hold with the Euclidean norm

in R2 replacing absolute values. The partial derivatives exist and the vector of

partials, g′(x), is bounded and smooth.

L(α, M) =
{

g : sup
x∈[0,1]2

|g(x)| ≤ M, sup
x∈[0,1]2

|g′(x)| ≤ M,

sup
x,y∈[0,1]2

|g′(x)− g′(y)| ≤ M |x− y|α−1
}

Theorem 1 For n equally spaced design points x∗i,j in [0, 1]2,

x∗i,j =
(

2i− 1
2
√

n
,

2j − 1
2
√

n

)
,

let Q̄g be the distribution of the

Yi,j = g(x∗i,j) + σξi,j

where σ is known, the ξi,j are independent standard normals, and g is an un-

known function from [0, 1]2 to R that is in L(α, M).

Let Qg be the distribution of the Gaussian process

Y (t) =
∫ t1

0

∫ t2

0

g(x) dx2 dx1 +
σ√
n

W (t) (5)

where W (t) is a Brownian sheet on the unit square.

Then there exists a randomization Ky such that

sup
g∈L(α,M)

‖Q̄gKy −Qg‖ ≤
6M√
2πσ2

(
n1/2−α/2 + n−1/4

)
.

For α > 1, this implies that the error made by performing the inference in the

continuous experiment is asymptotically negligible. This is a reasonably sharp

result in that Brown and Zhang (1998) showed that the experiments are not

equivalent for α = 1. Theorem 1 is proven is section 3.

The experiments are asymptotically equivalent because there is a simple

transformation in the other direction, taking the increments of the Gaussian

process, that produces a smaller error than in Theorem 1. The details are in

section 4.3.

It will be instructive to first show the following result about density estima-

tion experiments. Let Pf = Pn
f be the distribution of n independent observa-

tions from Pf a distribution on the unit interval with density f . Then let P̄f
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be the distribution that results from binning the n observations into m equal-

length subintervals. The new observations have an m-dimensional multinomial

distribution.

Theorem 2 For a density f ∈ F(α, M, ε) such that F(α, M, ε) ⊂ L(α, M) and

f(x) > ε for every x in the sample space, there exists a randomization Kx such

that

sup
f∈F(α,M,ε)

‖P̄fKx − Pf‖ ≤ 3Mε−1/2n1/2
(
m−α + m−3/2

)
.

The implication is that the experiments are asymptotically equivalent as long

as the number of bins is greater than n−1/(2α) for α < 3/2. The transformation

in the other direction just bins the continuous observations to produce exactly

P̄f from Pf . Theorem 2 is proven in section 2.

Remark: The constants 6/
√

2π and 3 in these inequalities are not meant to

be sharp, but they indicate that the statements are true for a reasonable size

constant.

2 Binning in density estimation

Let x∗j = (2j − 1)/2m denote the midpoint of the jth interval. For the n

independent observations X1, . . . , Xn with density f , let X∗
i = x∗j when Xi

is in the sub-interval [(j − 1)/m, j/m]. The X∗
1 , X∗

2 , . . . , X∗
n are independent

observations from a discrete probability distribution Pθ with probabilities

θj =
∫ j

m

j−1
m

f(x) dx j = 1, . . . ,m (6)

on the points x∗j .

The rounding off of observations onto a regular grid has computational ad-

vantages, see Silverman (1982) and Fan and Marron (1994). In Hall and Wand

(1996), they demonstrated that kernel density estimators based on discretized

versions of the data perform nearly as well as on the original data. They also

discussed “common linear binning” which is related to our method, but differs

in that their triangular kernel is part of the binning procedure while we use the

kernel to smooth data that has already been binned.

A sufficient statistic for estimating the θj is the number of observations at

each x∗j . Let X̄1, . . . , X̄m be the counts at each x∗j . The conditional distribution
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of the X∗
i given the X̄i is just the probability of each random ordering of n

objects of m types. This conditional distribution does not depend on the θj ,

and the necessary randomization takes, for each j, X̄j copies of x∗j and then

randomly assigns an index i to each of the n observations. Therefore, the first

part of the randomization Kx chooses a random permutation to produce n

independent observations from the discrete Pθ.

Theorem 2 can then be established by constructing a randomization from

the X∗
i to the Xi. Working on each coordinate separately, the randomization

chooses a new Xi to correspond to each X∗
i . By construction, if X∗

i = x∗j

then Xi must have been in [(j − 1)/m, j/m], but we don’t know anything else

about Xi. Thus it seems appropriate to have Kx uniformly distributed over

this subinterval. This results in a continuous marginal distribution that has

a piecewise constant density (equal to mθj on the jth subinterval). A better

approximation to the original distribution of f can be achieved using a Kx that

is more spread resulting a smoother density (see section 4.)

Let Kj be the conditional distribution of the new Xi given that X∗
i = x∗j .

The marginal distribution PθKx is a mixture of m distributions K1, . . . ,Km

with weights θj such that it has density

d(PθKx)
dλ

(x) =
m∑

j=1

θj
dKj

dλ
(x) ≡ f̂(x)

where λ is uniform on [0, 1]. Repeating this randomization on the n independent

observations defines Kx such that P̄fKx = Pn
f̂

. Therefore, the result of the

randomization is n independent observations from a distribution with density

f̂ .

The final step is to bound the total variation distance between n independent

observations from f and f̂ respectively. For product experiments it is worthwhile

to use a Hellinger distance bound on the total variation distance

‖P−Q‖ ≤
√

2 H(P, Q) =
√

2
(

1
2

∫ (√
dP−

√
dQ
)2
)1/2

,

because the squared Hellinger distance between product measures is bounded

by the sum of the squared marginal distances,

H2(Pn
f̂

, Pn
f ) ≤ nH2(Pf̂ , Pf )

(see, for example, Strasser (1985, pp. 11–12).)
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If the densities are bounded away from zero, f ≥ ε > 0, then the Hellinger

distance can be bounded by the L2 distance between the densities,

1
2

∫ (
f1/2 − f̂1/2

)2

=
∫

(f − f̂)2

2(f1/2 + f̂1/2)2
≤ 1

2ε

∥∥∥f − f̂
∥∥∥2

2
.

In section 4.1, it is shown that for f ∈ L(α, M),∥∥∥f̂ − f
∥∥∥2

2
≤ M2m−3 + 9M2m−2α. (7)

Therefore,

sup
f∈F(α,M,ε)

‖Pn
f̂
− Pn

f ‖ ≤ 3Mε−1/2n1/2(m−α + m−3/2).

and Theorem 2 is established.

3 Nonparametric regression

The nonparametric regression experiment in (1) has n observations that can

be thought of as approximating the increments of the Brownian Motion pro-

cess in (2) Yi ≈ n [Y (i/n)− Y ([i− 1]/n)]. Brown and Low (1996) showed that

for g ∈ L(α, M), α > 1/2, these experiments are equivalent. Using the Yi as

approximations to the increments, a continuous Gaussian process can be con-

structed by interpolating independent Brownian bridges Bi(t) on [(i−1)/n, i/n]

between the points Y (i/n),

Yḡ(t) =
∫ t

0

n∑
i=1

Yi1((i−1)/n,i/n] dt + σ
1
n

n∑
i=1

Bi(t).

This process has mean ḡ(t) = g(xi) for (i − 1)/m ≤ t < i/m, and for 0 < s <

t < 1, Cov (Yḡ(t), Yḡ(s)) = σ2s
n . This result can be extended to the unit square

if differentiable drift functions can be properly exploited, much as in the density

estimation case.

3.1 The construction

The constructed process is a function of the Yi and some independent contin-

uous Gaussian processes on [0, 1]2. These centered processes are determined

by their covariance functions (Dudley, 2002, Theorem 12.1.3). The Brownian

sheet W (t) is a centered Gaussian process with covariance function C(t, s) =
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(s1 ∧ t1)(s2 ∧ t2). We also need Ki-Brownian sheets WKi where the Ki are

probability measures on [0, 1]2. Let κi be the cumulative distribution function

(CDF) for the measure Ki. The covariance function for WKi is

Cov (WKi(s),WKi(t)) = κi(s ∧ t) s, t ∈ [0, 1]2

where s∧t = ((s1 ∧ t1), (s2 ∧ t2)). Furthermore, a Ki-Brownian bridge BKi can

be constructed via WKi by

BKi(t) = WKi(t)− κi(t)WKi(1, 1).

The Ki-Brownian bridge has mean zero and covariance

Cov (BKi(s), BKi(t)) = κi(s ∧ t)− κi(s)κi(t). (8)

Hence Var(BKi(t)) = κi(t)(1− κi(t)).

The construction of the Gaussian process Y ∗(t) from the Yi’s first generates

n independent processes BK1, . . . , BKn, and then

Y ∗(t) =
1
n

n∑
i=1

[Yiκi(t) + σBKi(t)] .

The mean of this process is 1
n

∑
g(x∗i )κi(t) and the covariance is

Cov(Y ∗(t), Y ∗(s)) =
1
n2

n∑
i=1

σ2κi(t)κi(s) + σ2 (κi(s ∧ t)− κi(s)κi(t))

=
σ2

n

(
1
n

n∑
i=1

κi(s ∧ t)

)
.

Assuming an additional condition on the Ki measures,

1
n

n∑
i=1

κi(t) = t1t2, (9)

fixes the covariance of Y ∗
g to be the same as Yg. The condition in (9) seems

reasonable as it implies that if all the Yi are the same then the resulting drift

function is constant over the whole square. The kernels described in section 4.2

meet this criterion as do uniform distributions over disjoint subsets.

Therefore, Y ∗ actually has the same distribution as

Yĝ(t) =
∫ t1

0

∫ t2

0

ĝ(x) dx +
σ√
n

W (t).

where

ĝ(x) =
1
n

n∑
i=1

g(x∗i )
dKi

dλ
(x).

This should be close in distribution to the Yg if g and ĝ are close.



10 A. Carter

3.2 A total-variation distance bound

Shifting two distributions by the same amount will not affect the total-variation

distance between them. Thus, without loss of generality, we will find the total-

variation distance between a process Y0(t) with mean 0 and variance σ2/n, and

a process Yδ(t) with drift δ(t) and the same variance. Let Q0 and Qδ be the

distributions of Y0 and Yδ respectively. The set of sample paths that achieves

the supremum in (3) is the set where

dQδ

dQ0
= exp

[
n

σ2

(∫
δ(t) dY (t)− 1

2
‖δ‖22

)]
> 1.

Let A be this set of continuous sample paths such that
∫

δ(t) dY (t) > 1
2‖δ‖

2
2.

Under Q0, the integral
∫

δ(t) dY (t) has a normal distribution with mean 0

and variance σ2‖δ‖22/n. Under Qδ, the integral has mean ‖δ‖22 and the same

variance. Therefore the total variation distance is

‖Q0 −Qδ‖ = |Q0A−QδA| = 1− 2Φ(−∆/2) (10)

where ∆ = σ−1n1/2‖δ‖2. The expression in (10) for the total variation distance

is concave for positive ∆ so a simple expansion gives

‖Q0 −Qδ‖ ≤
1√
2π

∆.

In the case of Yg and Yĝ, the bound again depends essentially on the L2

distance between the means,

‖Qg −Qĝ‖ ≤
1√
2π

√
n

σ
‖g − ĝ‖2.

A bound on the L2 distance is needed, in section 4.2 we will show that

sup
g∈L(α,M)

‖g − ĝ‖2 ≤ 6M
(
n−α/2 + n−3/4

)
. (11)

Therefore,

sup
g∈L(α,M)

‖Q̄gKy −Qg‖ ≤
6M√
2πσ2

(
n1/2−α/2 + n−1/4

)
which proves Theorem 1.
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4 Bounding the L2 distances

The Kj are probability measures with densities equal to linear interpolating

functions:

dKj

dλ : �
�
�

@
@

@
m

x∗j−1 x∗j x∗j+1

where x∗j−1 = x∗j − 1/m and x∗j+1 = x∗j + 1/m.

For j = 1, we will need a different conditional density,

dK1
dλ :

m

@
@

@

1
2m0 3

2m

to avoid getting observations outside of [0, 1]. The analogous measure will be

used for j = m to avoid results greater than 1. Equivalently, we could use the

triangular measures everywhere and then reflect any observations outside of the

interval back in.

The average
1
m

m∑
j=1

aj
dKj

dλ
(x)

is a piecewise linear function that is equal to aj at the midpoints x∗j .

4.1 One dimension.

For the set of functions f ∈ L(α, M) with continuous first derivatives (α > 1),

the error in a linear Taylor expansion is

|f(t + δ)− f(t)− δf ′(t)| = |f(t) + δf ′(t∗)− f(t)− δf ′(t)| ≤ Mδα (12)

from (4). The existence of t∗ such that |t∗− t| ≤ δ and f(t+ δ) = f(t)+ δf ′(t∗)

follows from the Mean Value Theorem.

Any x between (2m)−1 and 1 − (2m)−1 lies between two of the grid points

x∗j and x∗j+1. The difference between f and f̂ at such an x is∣∣∣f(x)− f̂(x)
∣∣∣ ≤ ∣∣∣f(x∗j )− f̂(x∗j )

∣∣∣+ ∣∣x− x∗j
∣∣ ∣∣∣f ′(x∗j )− f̂ ′(x∗j )

∣∣∣+ |E1|+ |E2| (13)

where E1 and E2 are the errors in expansions around x∗j of f and f̂ respectively.

By (12), |E1| ≤ Mm−α.
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To bound the first term on the right in (13) The average over any interval

[(i− 1)/m, i/m] can be approximated using an expansion around the midpoint

x∗j ,

f̂(x∗j ) = m

∫ i/m

(i−1)/m

f(x) dx

= m

∫ i/m

(i−1)/m

f(x∗j ) + (x− x∗j )f ′(x∗j ) + E3 dx

= f(x∗j ) + E4

because
∫ i/m

(i−1)/m
(x − x∗j ) = 0. The bound in (12) implies that |E3| ≤ Mm−α

and thus |E4| ≤ Mm−α.

The second term on the right in (13) is problematic because the derivative

f̂ ′(x∗j ) does not exist. However, if we are only interested in x∗j < x < x∗j+1 then

defining f̂ ′(x∗j ) = m
(
f̂(x∗j )− f̂(x∗j+1)

)
makes |E2| ≡ 0. Making two appeals to

the Mean Value Theorem,

f̂ ′(x∗j ) = m
(
f̂(x∗j )− f̂(x∗j+1)

)
= m2

∫ i/m

(i−1)/m

f(x)− f
(
x + m−1

)
dx

= m2

∫ i/m

(i−1)/m

m−1f ′(ξx) dx

= f ′(ξj)

where ξx and ξj are arbitrary points in the interval [x∗j−1, x
∗
j+1] that make the

statements true. Therefore, the second term is∣∣x− x∗j
∣∣ ∣∣∣f ′(x∗j )− f̂ ′(x∗j )

∣∣∣ ≤ 1
m

∣∣f ′(x∗j )− f ′(ξj)
∣∣ ≤ Mm−α,

and each of the terms in (13) is bounded∣∣∣f(x)− f̂(x)
∣∣∣ ≤ |E4|+ Mm−α + |E1|+ 0 ≤ 3Mm−α. (14)

This argument does not work at the edges. If x < (2m)−1 then f̂(x) =

f̂([2m]−1) and∣∣∣f(x)− f̂(x)
∣∣∣ ≤ ∣∣∣f̂([2m]−1)− f([2m]−1)

∣∣∣+ |x− x∗j ||f ′(x∗j )|+ |E1|

≤ 2Mm−α +
1
2
Mm−1 (15)
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because |f ′(x∗j )| < M by assumption. The same argument works for x > 1 −
(2m)−1.

Squaring the point-wise bounds in (14) and (15) then integrating,∥∥∥f̂ − f
∥∥∥2

2
=
∫ 1/(2m)

0

(f̂ − f)2 +
∫ 1−1/(2m)

1/(2m)

(f̂ − f)2 +
∫ 1

1−1/(2m)

(f̂ − f)2

≤ m−1M2m−2 + 9M2m−2α. (16)

Therefore, the bound needed in (7) is established.

4.2 Two dimensions.

For regression mean functions g(x) on [0, 1]2, we will use kernels that are prod-

ucts of the one-dimensional kernels above. The CDF of the kernel Ki,j is

κi,j(x) = κi(x1)κj(x2) where κi and κj are the CDF’s of Ki and Kj respectively.

In R2, the differentiability of g gives

g(x) = g(x∗i,j) + (x− x∗i,j)
T g′(x∗i,j) + E1, (17)

and the Lipshitz condition implies that the error is bounded by

|E1| ≤ |x− x∗i,j ||g′(x∗i,j)− g′(ξ)| ≤ M |x− x∗i,j |α (18)

as in the one dimensional case.

The mean value of the constructed process ĝ is no longer linear, but the

quadratic part is small. Consider points x in the interior of the square formed

by the four midpoints x∗i,j ,x
∗
i+1,j ,x

∗
i,j+1, and x∗i+1,j+1.

ĝ(x) = g(x∗i,j) +
√

n
(
x− x∗i,j

)T ( g(x∗i+1,j)− g(x∗i,j)

g(x∗i,j+1)− g(x∗i,j)

)
+ E2 (19)

The differences can be written as

g(x∗i+1,j)− g(x∗i,j) =
(

1√
n

0
)

g′(x∗i,j) + E3,

g(x∗i,j+1)− g(x∗i,j) =
(

0 1√
n

)
g′(x∗i,j) + E4.

The bound in (18) means the errors |E3| and |E4| are less than Mn−α/2.

The error term E2 in (19) is the quadratic component of the mean function.

Let (ζ1, ζ2) = (x− x∗i,j)
T , then

E2 = nζ1ζ2

[
g(x∗i,j)− g(x∗i+1,j)− g(x∗i,j+1) + g(x∗i,j+1)

]
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The size of |E2| is bounded using n|ζ1ζ2| ≤ 1 and∣∣g(x∗i,j)− g(x∗i+1,j)− g(x∗i,j+1) + g(x∗i+1,j+1)
∣∣ ≤ n−1/2|g′(x∗i,j+1)−g′(x∗i,j)|+|E3|+|E5|

where E5 is the error in approximating the difference g(x∗i+1,j+1)− g(x∗i,j+1) by

the derivative at x∗i,j+1. Thus, |E5| ≤ Mn−α/2 and |E2| ≤ 3Mn−α/2.

Putting together (17) and (19)

|g(x)− ĝ(x)| ≤
∣∣∣g(x∗i,j) + (x− x∗i,j)

T g′(x∗i,j) + E1+

−
[
g(x∗i,j) + (x− x∗i,j)

T g′(x∗i,j) + n1/2ζ1E3 + n1/2ζ2E4 + E2

] ∣∣∣ ≤ 6Mn−α/2

for x not within 1
2n−1/2 of the edge of the square. The contribution from the

center of the square to ‖g − ĝ‖22 is therefore less than 36M2n−α.

To see what happens near the edges of the square, consider a point x where

the first coordinate is less than 1
2n−1/2, then the ĝ function is exactly

ĝ(x) = g(x∗i,j) +
√

n
(
x− x∗i,j

)T ( g(x∗i+1,j)− g(x∗i,j)

0

)

Thus,

|g(x)− ĝ(x)| ≤ |E1|+ |E3|+
M

2
n−1/2 ≤ 1

2
Mn−1/2 +

3
2
Mn−α/2

where 1
2Mn−1/2 bounds the contribution from the second coordinate of g′(x)

because |g′(x)| ≤ M . An analogous bound can be put on the errors along the

other sides.

Finally, if x1 < 1
2n−1/2 and x2 < 1

2n−1/2, then ĝ = g(x∗i,j) and thus |g(x)−
g(x∗i,j)| ≤ M(2n)−1/2. The same bound applies in the other three corners.

The total contribution to ‖g − ĝ‖22 from all the area near the edges is less

than M2n−3/2/2 because the total area is less than 2n−1/2.

Therefore,

‖g − ĝ‖22 ≤
1
2
M2n−3/2 + 36M2n−α

which establishes (11).

4.3 The other direction

Asymptotic equivalence also requires a transformation in the other direction:

a way to generate the n regression observations from the continuous Gaussian
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process. The transformation uses the increments of the process over each square,

Y ∗
i,j = n

[
Y
(

i√
n
, j√

n

)
− Y

(
i−1√

n
, j√

n

)
− Y

(
i√
n
, j−1√

n

)
+ Y

(
i−1√

n
, j−1√

n

)]
.

Let Ii,j =
{

(x1, x2) : i−1√
n

< x1 ≤ i√
n
, j−1√

n
< x2 ≤ j√

n

}
. Then the increments

Y ∗
i,j are independent with variance σ and have mean n

∫∫
Iij

g dx.

The only error then is the difference between g(x∗i,j) and this average.

g(x∗i,j)− n

∫∫
Ii,j

g(x) dx = n

∫∫
Ii,j

g(x∗i,j)− g(x) dx

= n

∫∫
Ii,j

(x− x∗i,j)
T g′(x∗i,j) + E1 dx

= n

∫∫
Ii,j

E1 dx

Therefore, by (18), (g(x∗i,j) − n
∫∫

Ii,j
g(x) dx)2 ≤ Mn−α. The total variation

distance between the joint distributions of all n observations is therefore less

than (
√

2πσ)−1Mn−α/2+1/2.

This error is less than that made in the other direction and therefore when-

ever the bound in Theorem 1 goes to 0, the experiments are asymptotically

equivalent.

4.4 Higher dimensions

The same technique could provide a solution in the three-dimensional case if

there is an added restriction to the class of parameter functions in order to

lessen the edge effects.

The kernel would still be a product of the one-dimensional kernels in each

of the dimensions K(x) = Ki(x1)Kj(x2)Kk(x3). The errors in the inner part

of the cube are of order O(n−α/3).

The points near the edge of the cube however would make an error of order

n−1/3 in at least one of the three coordinates. This contributes a term of order

O(n−1) to the squared difference between g and ĝ. The result is that the total-

variation distance between the Gaussian processes will not converge to 0. It

is possible to impose conditions on the drift functions to minimize these edge

effects. For example, imposing a periodic boundary condition and adjusting

the edge kernels to be periodic makes the error O(n−α/3) everywhere. This is

sufficient for asymptotic equivalence if α > 3/2.
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Higher dimensions would require α > 2 (see Brown and Zhang (1998)),

and our methods cannot take advantage of this added smoothness. Higher-

order interpolating kernels are negative in places, and the requirement that the

kernels have a positive density function is critical in the construction.

Using a Fourier series expansion, Rohde (2004) was able to take advantage

of arbitrary amounts of smoothness in the case of periodic functions in the

nonparametric regression problem, and it is likely those techniques could be

extended to higher dimensional problems.
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